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This paper presents a functional near infrared (NIR) spectroscopy-based paradigm that can be used to decode answers to four-choice 
questions. Ten healthy subjects were asked to perform one of the four different brain activities, that is, right-hand motor imagery (RMI), 
left-hand motor imagery (LMI), mental arithmetic (MA) and mental counting (MC), to answer the given four-choice questions. In select-
ing the A, B, C or D choices, the subjects were asked to perform RMI, LMI, MA or MC, respectively. Signals from the primary motor and 
prefrontal cortices were acquired simultaneously using a continuous-wave functional NIR spectroscopy system. The four activities were 
classified using multiclass linear discriminant analysis to decode the answers to an average accuracy of 73.3% across the 10 subjects. 
The results demonstrate the potential of functional NIR spectroscopy to decode answers to four-choice questions using four different 
intentionally generated brain activities as control signals.
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Introduction
Decision decoding is of particular importance in cases of totally 
locked-in syndrome (LIS), amyotrophic lateral sclerosis (ALS), 
anarthria and other such severe motor disabilities where 
patients (despite being fully conscious) cannot communicate 
naturally.1 A brain–computer interface (BCI) can, by bypassing 
the central nervous system, provide a means of communica-
tion for such people.2 Invasive BCIs are capable of controlling 
a prosthetic device by directly acquiring brain signals from the 
grey matter:3 However, non-invasive BCIs usually use brain 
signals from/on the scalp in making commands to a computer, 
in which those brain signals are generated from various brain 
activities. Crucially, for such BCI purposes, brain activities can 
be generated using the process of thinking alone: no body 
movement is required.

BCIs have been shown to work well in a significant number 
of previous studies using a variety of brain-signal acquisi-
tion methods including electroencephalography (EEG),2,4,5 

functional  magnetic resonance imaging (fMRI)1,6 and func-
tional near infrared (NIR) spectroscopy.7–13 Functional NIR 
spectroscopy is an optical brain-imaging modality that has 
the advantages of being portable, cheap and relatively simple. 
Its spatial resolution is comparable with that of EEG. Since 
Jobsis14 first introduced the principle of NIR spectroscopy in 
1977, it has been applied to the fields of brain mapping, brain-
state decoding and BCI.15–27

In functional NIR spectroscopy-based BCI applications, the 
user can communicate by evoking different patterns of activa-
tion in a particular brain region. This can be done by performing 
different mental tasks, such as motor imagery,7,8,9,12 mental 
arithmetic (MA),13,28–31 music imagery10,28,29 and others.10 
These evoked patterns can be detected and recognised as 
different activities by classifying them. The relevant command 
signals can then be produced to communicate with a computer 
in a manner premeditated by the user.
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The feasibility of using motor imagery for the purpose of 
BCI has been established in previous functional NIR spec-
troscopy and EEG studies.4,7–9,12,32–34 Using motor imagery is 
advantageous from the neurorehabilitation perspective, as 
the brain area activated by it is similar to that activated by 
motor execution. For the same reason, it is also considered 
to be an unavoidable way to provide BCI control for paralysed 
people. However, a disadvantage of motor imagery is the fact 
that it might be difficult to perform it for some people with 
congenital and/or longstanding motor disabilities because of 
cortical reorganisation.35,36 Other than motor imagery, activi-
ties such as mental arithmetic (MA) and mental counting (MC) 
(when targeting the prefrontal cortex) are also good choices 
for BCI application,29,31,37 particularly because the prefrontal 
cortex usually is not implicated in motor disabilities. The use 
of prefrontal cortex activities for BCI purposes also is advan-
tageous because noise owing to hair artefacts is less severe. 
Since hair and hair follicles are strong absorbers of light in the 
NIR region, hair-free regions provide improved signal strength 
and penetration depth.38 Some NIR spectroscopy-BCI studies 
have shown promising results in using the prefrontal mental-
arithmetic and mental-counting activities.29 A disadvantage, 
however, is that both sweat and muscle twitches can affect 
prefrontal-cortex-originated NIR spectroscopy signals.

EEG- and NIR-based BCIs have been shown to work well for 
binary decoding and yes/no communication.13,39–41 However, 
they have not yet been tested for multiple-decision-based 
communication, whereas fMRI-based BCI has shown to be 
feasible for multiple-decision decoding.1 However, fMRI equip-
ment is not portable, which reflects the fact that it is unsuit-
able for daily-life usage.

In the present study, we decoded answers to four-choice 
questions based on four different brain activities acquired 
using concurrent fNIRS measurement from the primary motor 
and prefrontal cortices. The four activities utilised were MA, 
mental counting (MC), right-hand motor imagery (RMI) and 
left-hand motor imagery (LMI). After being acquired, the 
signals were preprocessed and classified using multiclass 
linear discriminant analysis (LDA) to decode the answers. The 
overall decoding accuracy across 10 subjects was 73.3%. To 
the best of our knowledge, this is the first functional NIR spec-
troscopy-based work to decode responses in a four-choice 
question paradigm using four different intentionally generated 
cognitive tasks acquired simultaneously from the primary 
motor and prefrontal cortices.

Materials and methods
Signal acquisition
Functional NIR spectroscopy uses near infrared-range 
(650~1000 nm) emitters to propagate light (through photon 
scattering) several centimetres through the scalp, skull and 
tissues to the microvessels in the cortex, where brain haemo-
dynamics are functionally imaged.42 In the brain, the photons 

are absorbed, primarily by oxygenated and deoxygenated 
haemoglobins (HbO and HbR), or undergo multiple scattering 
in returning to the surface of the head. There, suitably posi-
tioned detectors record the returning photons. The changes 
in the concentrations of HbO and HbR can then be determined 
using the modified Beer–Lambert law,43 and by monitoring 
those changes, conclusions as to brain-functional activity can 
be drawn. In this study, we used a multichannel continuous-
wave imaging system, DYNOT (dynamic near infrared optical 
tomography; NIRx Medical Technologies, NY), to acquire NIR 
signals at a sampling rate of 1.81 Hz for two wavelengths 
l1 = 760 nm and l2 = 830 nm. The selection of the sampling 
rate is in accordance with the literature.11–13,23

Subjects
Ten healthy subjects (all right-handed, male, mean age 
28.2 ± 6.6) participated in the experiment. The reason for 
recruiting only right-handed subjects was to minimize any 
variations in the haemodynamic response owing to differences 
caused by hemispheric dominance. None of the subjects had a 
history of any psychiatric or neurological disorder. All of them 
had normal or corrected-to-normal vision. They provided their 
verbal informed consent after the experimental procedure was 
explained to them in detail. The experiment was conducted in 
accordance with the latest Declaration of Helsinki.

Optode configuration and positioning
The positioning of optodes in the NIR experiment is of vital 
importance to ensure that the photons travel through the area 
activated by brain activity. Usually, the international 10–20 
system has been used as a basis for optode positioning.44 The 
distance between an emitter and a detector also is very impor-
tant, as it affects the penetration depth and signal strength. 
The midpoint between the emitter and the detector is consid-
ered as a point of maximum penetration depth. An increase 
in the emitter-detector distance, for example, corresponds 
to an increase in the imaging depth,45 whereas a separa-
tion of more than 5 cm might result in weak and unusable 
signals.46 To measure haemodynamic response signals from 
the cortical area, usually an emitter–detector separation of 
3–4 cm is applied.47

In consideration of the above points, six NIR light emitters 
and six detectors (with a 3 cm interoptode distance) were posi-
tioned over the primary motor cortex in both hemispheres to 
measure the signals from RMI and LMI; see Figure 1(a). The 
primary motor cortex area is well known as an area of the brain 
activated by motor imagery.48,49 The 12 optodes were arranged 
in such a way as to make 17 channels in each hemisphere. 
Additionally, nine channels were made by positioning three 
emitters and five detectors over the prefrontal cortex, with 
an interoptode distance of 3 cm, to measure the signals from 
MA and MC; see Figure 1(b). The total numbers of optodes 
and channels, respectively, are 32 (24 over the primary motor 
cortex and eight over the prefrontal cortex) and 43 (17 × 2 over 
the primary motor cortex and nine over the prefrontal cortex).
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Experimental procedure
In preparation for the experiments, the subjects were asked to 
relax for 5 min in order to remove any prior existing haemody-
namic response activations owing to previous activities. They 
were also advised not to drink coffee or alcohol or smoke 
cigarettes at least 3 h before the experiment. Each subject 
was seated in a comfortable chair facing a 15.6 inch monitor 
located at a distance of approximately 65~70 cm in a dimly 
lighted room. They were asked to remain relaxed and to restrict 
their body movements or thoughts during the experiments. 
Each experiment started with a 60 s rest period to setup a 
baseline value, followed by the following sequence: (1) 20 s 
rest period, (2) 10 s question presentation period, (3) 10 s deci-
sion period (see Figure 2). This 40 s sequence was repeated 40 
times. The total duration of the experiment for each subject, 
therefore, was 1600 s. The task period of 10 s was chosen in 
accordance with the literature.9,10,12,28 It has been shown that 

a 10~12 s task is sufficient to adequately acquire the haemo-
dynamic signals corresponding to brain activities.9,10 During 
the question-presentation period in each repetition, a four-
choice question was presented on the screen for 10 s. The 
total number of questions presented, and thereby the trials 
per subject, then, was 40. Since 40 trials is a small number to 
accept the results statistically and to estimate a meaningful 
model, four such experimental sessions were performed by 
each subject. The final number of trials per subject was there-
fore 160. The subjects were asked to make a decision on the 
four-choice question appearing on the screen during each 
decision period. To answer the questions in choices A, B, C 
or D, the subjects were required to perform RMI, LMI, MA or 
MC, respectively. The instruction to select the specific option 
to perform the specific task was displayed on the screen 
during the question presentation period. For the RMI and 
LMI tasks, the subjects were asked to kinesthetically image 

Figure 1. Optode positioning and channel configuration (red circles represent emitters, blue squares represent detectors). In (a), six 
emitters and six detectors (over each hemisphere) were used to acquire signals corresponding to right- and left-hand motor image-
ries. In (b), three emitters and five detectors were used to acquire signals corresponding to mental arithmetic and mental counting. 
The optode positioning has been made with reference to Fp1 and Fp2 of the International 10–20 System.

Figure 2. Experimental paradigm: After the initial rest period of 60 s to set up the baseline values, the 20–10–10 s sequences corre-
sponding to rest, question-display and response periods, respectively, were repeated 40 times for each subject in one experimental 
session.
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the squeezing of a rubber ball with their right and left hands, 
respectively, while avoiding any muscular tension, as in Coyle 
et al.8 For the MA task, the subjects were asked to mentally 
perform a series of arithmetic calculations appearing on the 
screen in a pseudorandom order. These calculations consisted 
of subtraction of a two-digit number (between 10 and 20) from 
a three-digit number throughout the 10 s task period, with 
successive subtraction of a two-digit number from the result 
of the previous subtraction (e.g. 730 – 17, 713 – 12, 701 – 15, 
etc.).13,29 The MC required the subjects to count backward 
starting from any three-digit number of their choice. For all 
of the tasks, the subjects were asked to maintain the corre-
sponding cognitive activity throughout the 10 s decision period. 
To make the subjects familiar with the experiment, a practice 
session was performed prior to the actual experiments.

Signal processing
The raw light-intensity signals were first used to calculate the 
concentration changes of HbO and HbR (∆cHbO(t) and ∆cHbR(t), 
together ∆cHbX(t)), where HbX Î {HbO, HbR}, according to the 
modified Beer–Lambert law:
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where ∆A(t; lj) (j = 1,2) is the unit-less absorbance (optical 
density) variation of a light emitter of wavelength lj, aHbX(lj) 
is the extinction coefficient of HbX in µM–1 mm–1, d is the unit-
less differential pathlength factor (DPF) and l is the emitter/
detector distance (in millimeters). NIRS-SPM50 was used to 
apply the modified Beer–Lambert law. The default values of 
7.15, 5, 1.48 µM–1 mm–1, 3.84 µM–1 mm–1, 2.23 µM–1 mm–1 and 
1.79 µM–1 mm–1 for d(l1), d(l2), aHbO(l1), aHbO(l2), aHbR(l1) and 
aHbR(l2) respectively, were used.

The ∆CHbX (t) signals were then normalised by dividing 
them by the mean value during the 60 s baseline/rest period. 
The ∆CHbX (t) signals obtained contain several physiological 
noises.51,52 In order to remove the high-frequency physiolog-
ical noises owing to heartbeat and respiration, the signals 
were low-pass filtered using a fourth-order Butterworth filter 
set to a cutoff frequency of 0.3 Hz. The signals were also high-
pass filtered with a cutoff frequency of 0.1 Hz to minimize the 
effect of low-frequency oscillations such as Mayer waves.

Feature selection and classification
The signal slope (SS) and signal mean (SM) of the∆CHbX (t) 
signals averaged over all of the channels were considered as 
the features for classification, as they had been shown to work 
well in the previous studies.12,53,54 The SS values were deter-
mined by linearly fitting a regression line (using the polyfit 
command in Matlab) to all of the data points in a 2~7 s time 
window during the 10 s decision-making period, while the SM 
values were acquired by averaging all of the data points in 
the same 2~7 s time window. The reason for selecting a 2~7 s 

time window was to improve the classification accuracy.12,55,56 
The resulting feature set consisted of 160 four-dimensional 
data points for each subject. Prior to classification, all of the 
features were normalised between 0 and 1 using the equation
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where x Î Rn (n = 160 in this paper) denotes the original SM 
and SS data, x¢ denotes the rescaled values between 0 and 1, 
max x is the largest value, and min x is the smallest value. In 
this research, we used multiclass LDA to classify the features 
derived from the four different activities. LDA is a widely used 
linear classifier offering the advantages of simplicity and 
computational speed.57 For additional details on multiclass 
LDA, see Li et al.58 Finally, the classification results were eval-
uated using leave-one-subject-out cross-validation. This uses 
the features of one subject for testing and the features of the 
remaining subjects for training. The process was repeated 
until all the subjects’ features had been tested.

Results
The all-subject-averaged decoding accuracy was 73.3%. The 
individual-subject decoding accuracies, given in Table 1, were 
well above the chance level. It should be noted that the chance 
level in our paradigm was 25%. Since the percentages of the 
four responses were not the same, the accuracies of indi-
vidual-option decoding were calculated for all subjects (see 
Figure 3). The all-subject accuracies in decoding A, B, C and D 
responses were 78.9%, 72.3%, 74.1% and 67.8%, respectively. 
The higher accuracy in decoding answer A implies that the 
signals from RMI were more easily distinguished than those 
from LMI, MA or MC. To see which of the proposed features 

Table 1. Overall decoding accuracies of all subjects.

Subjects Questions 
asked

Correctly 
decoded

Decoding 
accuracy  (%)

1  160 109 68.1

2  160 114 71.2

3  160 124 77.5

4  160 116 71.8

5  160 119 72.5

6  160 117 73.1

7  160 126 78.7

8  160 114 71.4

9  160 119 74.3

10  160 115 71.8

Total 1600 1173 73.3
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were more discriminative, classification was performed 
using different combinations of SS and SM of ∆cHbZ(t). The all-
subject-average decoding accuracy using SS of HbO and SM of 
HbO, SS of HbO and SM of HbR, SS of HbO and SS of HbR, SS 
of HbR and SM of HbO, SS of HbR and SM of HbR, and SM of 
HbO and SM of HbR were 70.2%, 66.1%, 65.8%, 62.7%, 61.1% 
and 63.9%, respectively. The analysis of these results revealed 
that SM and SS of HbO signals were more discriminative than 
those of HbR signals. However, the inclusion of SM and SS of 
HbR, though less discriminative individually, did improve the 
overall accuracy.

Discussion
This paper presents a method by which four different func-
tional NIR spectroscopy signals can be reliably originated 
to encode four distinct information units to answer four-
choice questions. The answers were successfully decoded 
to an average accuracy of 73.3% across all the subjects, thus 
establishing the suitability of decoding answers to four-choice 
questions using functional NIR spectroscopy. It should be 
noted that the classification accuracies varied among the 
subjects and even among the trials. This can be attributed 
to both individual-subject differences and trial-to-trial varia-
tions in the signals caused by background activity or as-yet-
unknown sources.59–62 To the best of our knowledge, this is the 
first functional NIR spectroscopy study to perform four clas-
sifications of four different covert tasks in decoding answers to 
four-choice questions. Shin and Jeong63 performed four-class 
classification of functional NIR spectroscopy signals for BCI; 

however, their paradigm consisted of overt (execution) tasks 
that, although fine for determining the suitability of a four-
choice BCI, are impractical for people with motor disabilities.

One drawback of using the proposed scheme is that it 
does not detect neuronal firing directly but instead detects 
the change in blood flow that occurs as a result of neuronal 
firing; hence the inherent delay of approximately 2 s.26,64,65 This 
haemodynamic delay in functional NIR spectroscopy response 
will not lead to high information transfer rates as compared 
with EEG-based BCI, even if four classes are considered. This 
might present a problem for real-time control of external 
devices using the scheme, though for decoding of applications, 
it does not matter much.

Regarding MA and MC tasks, the effects of habituation66 and 
the differences between high- and low-skilled arithmetic task 
performers67 were not considered in this study. Both factors 
might contribute to a low haemodynamic response over time. 
Furthermore, the MC task did not elicit strong signals, since it 
did not put a high cognitive load on the subjects. The MC task 
is therefore less suitable for BCI purposes compared with the 
other three tasks used in this study. This is also evident from 
the lower decoding percentage of option D which was associ-
ated with MC tasks.

Although dividing the experiment into different sessions 
and then recombining, the so-called session-to-session 
transfer, is common in BCI,68,69 the practicality of the results is 
decreased because it is not feasible for real-time and online 
analysis.

A limitation of the proposed system is that it should be 
“synchronous” in the sense that the brain signal should be 
detected during the decision-making period and therefore will 

Figure 3. Classification accuracies (correctly decoded/total answers) of four options for all the subjects. Options A, B, C and D for 
Subject 1 were selected 37, 42, 43 and 48 times, respectively, and were correctly decoded 27, 27, 28 and 27 times, respectively, which 
indicates that RMI, LMI, MA and MC were correctly classified 72.9%, 64.2%, 65.1% and 71.0%, respectively.
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not work if the subject does not perform any of the recom-
mend tasks during the response period.

One final factor of note is the healthy status of all of the 
subjects who participated in this study. Haemodynamic 
responses can differ in cases of people with LIS, ALS or 
other congenital or post-injury motor disabilities that usually 
result in relatively low classification accuracies.10 It has 
been shown that classification accuracies can be increased 
using simultaneous  EEG and fNIRS measurement to extract 
features.54,70

Conclusions
This study demonstrated the feasibility of a functional NIR 
spectroscopy-based four-class brain–computer interface by 
decoding answers to four-choice questions. The functional 
NIR spectroscopy signals arising from RMI, LMI, MA and MC 
were acquired in a “synchronous” way from the primary motor 
and prefrontal cortices, respectively. Using the SM and SS 
obtained during a 2~7 s segment from the 10 s task period, the 
four cognitive tasks were classified to an average accuracy of 
73.3%.
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